Totally geodesic surfaces in twist knot complements
نویسندگان
چکیده
In this article, we give explicit examples of infinitely many non-commensurable (non-arithmetic) hyperbolic $3$-manifolds admitting exactly $k$ totally geodesic surfaces for any positive integer $k$, answering a question Bader, Fisher, Miller and Stover. The construction comes from family twist knot complements their dihedral covers. case $k=1$ arises the uniqueness an immersed thrice-punctured sphere, Reid. Applying proof techniques main result, explicitly construct non-elementary maximal Fuchsian subgroups infinite covolume within groups, also show that no complement with odd prime half twists is right-angled in sense Champanerkar, Kofman, Purcell.
منابع مشابه
Hyperbolic Knot Complements without Closed Embedded Totally Geodesic Surfaces
It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally geodesic are given. Roughly speaking, sufficiently ‘complicated’ surfaces can ...
متن کاملTotally Geodesic Seifert Surfaces in Hyperbolic Knot and Link Complements I Colin Adams and Eric Schoenfeld
The first examples of totally geodesic Seifert surfaces are constructed for hyperbolic knots and links, including both free and totally knotted surfaces. Then it is proved that two bridge knot complements cannot contain totally geodesic orientable surfaces.
متن کاملTotally Geodesic Seifert Surfaces in Hyperbolic Knot and Link Complements Ii
We generalize the results of [AS], finding large classes of totally geodesic Seifert surfaces in hyperbolic knot and link complements, each the lift of a rigid 2-orbifold embedded in some hyperbolic 3-orbifold. In addition, we provide a uniqueness theorem and demonstrate that many knots cannot possess totally geodesic Seifert surfaces by giving bounds on the width invariant in the presence of s...
متن کاملCompressing totally geodesic surfaces
In this paper we prove that one can find surgeries arbitrarily close to infinity in the Dehn surgery space of the figure eight knot complement for which some immersed totally geodesic surface compresses. MSC: 57M25, 57M50
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2022
ISSN: ['1945-5844', '0030-8730']
DOI: https://doi.org/10.2140/pjm.2022.319.153